Planned Obsolescence

It began as all well-meaning ideas do -- as an effort to make life a little bit easier.

This year I began building my own stock-picking artificial intelligence (AI) program. I created it to help me invest my savings and gave it a name: AlphaBean.

But as AlphaBean became smarter and smarter, I eventually began to wonder: Could it replace me?

After all, I'm a financial journalist. My job involves studying companies and writing about them for the wider public. If AlphaBean could learn to invest, might it, or something like it, steal my job?

Past is prologue

Of course, I'm not the first person to create an investing algorithm. Algorithmic thinking about investing has existed for a long time -- much longer, in fact, than people normally think.

Benjamin Graham, the person who practically invented stock analysis and served as a mentor to Warren Buffett, famously suggested more than half a century ago to his readers that they "limit themselves to issues selling not far above their tangible asset value." In ruling out pricier stocks, Graham was articulating a rule or heuristic for winnowing the number of possible answers a human being must consider -- much like how programmers often do with AI.

Investing has become much more competitive and financial data more widely available since Graham's day, so you won't find many companies that meet his criterion anymore. Now the work of scanning through the newspaper has been replaced by websites like Yahoo! Finance, MSN, and CNBC, and partially automated with computerized screening tools.

Investors' relentless pursuit of money meant that technical progress didn't stop with the simple algorithms used by Graham and his followers. Aided by computing advancements, people began using trading systems that bought and sold stocks based on other things, too, including technical indicators.

Today, short-term-oriented algorithms direct the majority of stock trades. They aren't rooted in an understanding of businesses or investing for the long term, but in noticing infinitesimal price discrepancies; detecting and sneaking ahead of big orders; riding waves of price momentum; processing economic, financial, and related news reports before anyone else can; or just having superior fiber-optic (or, better yet, microwave) communication access to the market.

But automated trading is beginning to come to individual investors in a much a different form. Robo-advisors -- financial advisory firms whose algorithms automatically allocate client funds -- have just in the past decade grown from nothing to having more than $200 billion in assets under management. With lower variable costs, they're able to serve smaller accounts and charge lower fees than traditional advisors. This makes robo-advisors a great option for individual investors. From a purely technical perspective, however, the algorithms robo-advisors use aren't much fancier than those of their flesh-and-blood counterparts.